III B.Tech - II Semester – Regular Examinations – JUNE 2023

PRODUCTION PLANNING AND CONTROL (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

													BL	СО	Max. Marks
UNIT-I											1	<u> </u>			
1	a)	Define PPC. Explain the need for PPC.									L2	CO1	7 M		
	b)	Forecast the demand for the following series									L3	CO3	7 M		
		by exponential smoothing method by taking													
		$\alpha = 0.3$ and 0.6.													
		Period	1	2	3	4	5	6	7	8	9	10			
		Actual demand	10	12	8	11	9	10	15	14	16	15			
	OR										•				
2	a)	Differentiate the qualitative and quantitative									L2	CO1	7 M		
		methods in forecasting.													
	b)	The demand for 10 weeks is given in the									L3	CO3	7 M		
		following table. Calculate the four-month								onth					
		moving average.													
		Week	1	2	3	4	5	6	7	8	9	10			
		Orders	120	90	100	110	45	91	65	71	49	55			

2			10	CO1	7 1 (
3	a)	Explain the scope of ERP and difficulties in	L2	CO1	7 M
	1 \	implementation.	1.0	002	7) (
	b)	A company requires 10000 units of an item	L3	CO3	7 M
		per annum. The cost of ordering is Rs. 150			
		per order. The inventory carrying cost is			
		30%. The unit price of the item is Rs. 12.			
		Calculate (i) The economic order quantity			
		(ii) Optimal total annual cost (iii) Time			
		between the orders.			
	1	OR			
4	a)	Compare VED analysis with ABC analysis.	L2	CO1	7 M
	b)	Explain P and Q systems of controlling the	L2	CO3	7 M
		inventories with neat diagrams.			
	1	UNIT-III			
5	a)	Explain the steps involved in the preparation		CO1	7 M
		of route sheet.			
	b)	Explain the bill of material with design		CO3	7 M
		specification chart.			
		OR			
6	a)	Explain about the scheduling techniques in	L2	CO1	7 M
		detail.			
	b)	Discuss any four priority rules for job	L2	CO1	7 M
		sequencing with simple example.			

		UNIT-IV										
7	a)	Explain the terms related to line balancing.	L2	CO1	7 M							
	b)	Explain various strategies in aggregate	L2	CO4	7 M							
		planning.										
	OR											
8	a)	What is line balancing? What is its	L2	CO1	7 M							
		importance in PPC? Explain it with an										
		example.										
	b)	What is the purpose of aggregate planning?	L2	CO4	7 M							
		Explain in detail.										
	I			11								
		UNIT-V										
9	a)	Describe the dispatching procedure.	L2	CO1	7 M							
	b)	Explain the applications of computer in	L2	CO2	7 M							
		production planning and control.										
	1	OR		11								
10	a)	Explain the reasons for existence of follow-	L2	CO1	7 M							
		up functions.										
	b)	Differentiate between centralized and	L2	CO2	7 M							
		decentralized dispatching procedures.										
	I											